Over the last decades, supplier development has become an increasingly important concept to remain competitive in today’s markets. Therefore, manufacturers invest resources in their suppliers to increase their abilities and, ultimately, to reduce their product prices. Thereby, most approaches found in the literature focus on long-term supplier development programs. Nevertheless, today’s volatile and dynamic markets require flexible approaches to deal with this complexity. We apply Model Predictive Control to optimize the number of supplier development projects in order to achieve flexibility while maintaining a certain level of security for all parties. Thereby, the article focusses on a multimanufacturer scenario, where two manufacturers aim to develop the same supplier. These manufacturers can establish different levels of horizontal collaboration. While previous results already show the benefits of applying this approach to a static scenario, this article extends this formulation by introducing market dynamics in the numerical simulations as well as into the optimization approach. Thus, the article proposes to derive regression models using real-world data. The article evaluates the effects of real-world market dynamics on two use cases: an automotive use case and a use case from the mobile phone sector. The results show that assuming market dynamics during the optimization leads to increased or at least close-to-equal revenues across the involved partners. The average increase ranges from approximately 1% to 5% depending on the type and magnitude of the dynamics. Thereby, the results differ depending on the selected collaboration scheme. While a full-cooperative collaboration scheme benefits the least from regarding dynamics in the optimization, it results in the highest overall revenue across all partners.