The complex nonlinear behaviour of unreinforced masonry (URM), along with the interaction between structural elements, still represents a challenge for the seismic assessment of existing URM buildings. A large variety of mathematical tools have been developed in the last decades to address the issue. The numerical work herein presented attempts to provide some insights into the use of FEM models to obtain reliable results from nonlinear dynamic analyses conducted with explicit methods. Through plane stress elements, two in-plane mechanisms were studied to identify optimal parameters for unreinforced masonry elements subjected to dynamic actions. The results were then compared with outcomes generated by an implicit solver. Subsequently, these parameters were used in nonlinear dynamic analyses on a building section for the seismic assessment in both unreinforced and reinforced conditions. The element type, hourglass control, damping, and bulk viscosity influence the dynamic response, mainly when the nonlinearities become larger. The hourglass control techniques employ a scaling factor to suppress the occurrence of spurious modes. Values ranging from 0.01 to 0.03 have shown effective results. When the stiffness-damping parameter for Rayleigh damping is of a similar order of magnitude or lower than the time increment without damping, the time increment remained in feasible ranges for performing analysis. Additionally, the bulk viscosity can stabilise the response without causing substantial alterations to the time increment if the values are under 1.00.