“…Prigogine, that irregular attractors of complex nonlinear systems cannot be described by trajectory approach, that are systems of differential equations. And only in twenty-first century it has been proved and on numerous examples it was convincingly shown, that there is one universal bifurcation scenario of transition to chaos in nonlinear systems of mappings and differential equations: autonomous and nonautonomous, dissipative and conservative, ordinary, with private derivatives and with delay argument (see, for example, [1][2][3][4][5][6][7][8][9]). It is bifurcation Feigenbaum-Sharkovsky-Magnitskii (FShM) scenario, beginning with the Feigenbaum cascade of period-doubling bifurcations of stable cycles or tori and continuing from the Sharkovskii subharmonic cascade of bifurcations of stable cycles or tori of an arbitrary period up to the cycle or torus of the period three, and then proceeding to the Magnitskii homoclinic or heteroclinic cascade of bifurcations of stable cycles or tori.…”