This paper proposes the use of non-uniform extended surfaces installed externally to the tubes of the radiation section of fired heaters, in order to obtain a better heat flux distribution to the coils. To this end, the heat transfer mechanisms present in such equipment were studied through computational fluid dynamics (CFD), using simplified geometries that represent typical sizes of fired heaters. Also, a simplified model for the combustion was considered. Although this model oversimplifies the physics of the problem, it was able to give satisfactory results for the parameters being optimized, considering the main objective of this paper, that is to minimize the non-uniformity of heat flux in the tubes of the radiant section of fired heaters. It was possible to obtain optimized geometric parameters for different types of extended surfaces evaluated, coupling the results of these models with the Particle Swarm optimization method through the use of a response surface technique,. The results indicate a significant improvement in the uniformity of the heat flux distribution to the tubes through the use of the proposed extended surfaces. Thus, this solution reveals to be an interesting alternative to reduce the risks of fluid degradation and coking formation. Future studies must investigate the non-uniformity of the heat flux due to the presence of the flame and consider the interaction between the reactive flow and the participating medium. Nevertheless, this paper presents some results that justify the optimization of such extended surfaces taking into consideration thermal radiation.