Abstract:Linear (and nonlinear) Schrödinger equations in the semiclassical (small dispersion) regime pose a significant challenge to numerical analysis and scientific computing, mainly due to the fact that they propagate high frequency spatial and temporal oscillations. At first we prove using Wigner measure techniques that finite difference discretisations in general require a disproportionate amount of computational resources, since underlying numerical meshes need to be fine enough to resolve all oscillations of the… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.