Liquid infiltration into photonic crystal fibers (PCFs) opens new horizons in optical fiber design. This innovation allows precise control of the refractive index, dispersion, and nonlinear effects within the PCF core, expanding its adaptability for various applications. Through numerical simulations, we explore the impact of different liquids on chromatic dispersion in PCFs, emphasizing the role of filling ratios. Our findings unveil shifts in zero dispersion wavelengths, with chloroform causing significant changes. Lower filling ratios reduce dispersion sensitivity, while higher ratios enable dispersion compensation. This study advances our understanding of liquid-filled PCFs, vital for cutting-edge photonics research and practical applications.