“…Most fractional differential equations do not have exact analytical solutions, so for tackling such approximation and numerical schemes must be applied. There are many researchers which have been interested to develop novel numerical methods for fractional partial differential equations (Ren and Wang 2017;Xing and Yan 2018;Zhang and Yang 2018;Sakar et al 2018;Mirzaee and Samadyar 2018) such as explicit finite difference (Shen et al 2011;Sousa 2012;Zhang and Yang 2018;Costa and Pereira 2018), implicit finite difference (Burrage et al 2012;Karatay et al 2011;Sunarto et al 2014), compact finite difference (Cui 2012;Wang and Ren 2019;Wang 2015), finite element (Ford et al 2011;Jiang and Ma 2011;Li and Yang 2017), spline (Arshed 2017;Siddiqi and Arshed 2015;Qiao and Xu 2018), Fourier analysis (Li et al 2018), radial basis functions (Golbabai et al 2019;Ahmadi et al 2017;Dehghan et al 2016;Hosseini et al 2016;Ghehsareh et al 2018), wavelets (Heydari et al 2015;Kargar and Saeedi 2017;Soltani Sarvestani et al 2019), sinc radial basis function (Permoon et al 2016), local radial basis function-generated finite difference (Nikan et al 2020b;Nikan et al 2020a) and spectral methods (Rashidinia and Mohmedi 2018;Yang et al 2018;Zaky 2018a, b;Aghdam et al 2020)…”