Experiments and numerical simulations were conducted to investigate the dispersion of turbulent jets issuing from realistic pipe geometries. The effect of jet densities and Reynolds numbers on vertical buoyant jets were investigated, as they emerged from the side wall of a circular pipe, through a round orifice. Particle image velocimetry (PIV) and planar laser-induced fluorescence (PLIF) techniques were employed simultaneously to provide time-averaged flow velocity and concentrations fields. Large eddy simulation (LES) was applied to provide further detail with regards to the three-dimensionality of air, helium, and hydrogen jets. These realistic jets were always asymmetric and found to deflect about the vertical axis. This deflection was influenced by buoyancy, where heavier gases deflected more than lighter gases. Significant turbulent mixing was also observed in the near field. The realistic jets, therefore, experienced faster velocity decay, and asymmetric jet spreading compared to round jets. These findings indicate that conventional round jet assumptions are, to some extent, inadequate to predict gas concentration, entrainment rates and, consequently, the extent of the flammability envelope of realistic gas leaks.