The damage formation in a multilayered armor system without and with an interlayer (rubber, Teflon, and aluminum foam) between the front face ceramic layer and the composite backing plate were investigated experimentally and numerically. The projectile impact tests were performed in a low-velocity projectile impact test system and the numerical studies were implemented using the nonlinear finite element code LS-DYNA. The results of numerical simulations showed that the stress wave transmission to the composite backing plate decreased significantly in Teflon and foam interlayer armor configurations. Similar to without interlayer configuration, the rubber interlayer configuration led to the passage of relatively high stress waves to the composite backing plate. This was mainly attributed to the increased rubber interlayer impedance during the impact event. The numerical results of reduced stress wave transmission to the backing plate and the increased damage formation in the ceramic front face layer with the use of Teflon and foam interlayer was further confirmed experimentally.