Abstract. In this work, energy absorption of ceramic tiles wrapped by aluminum foil on its impact face is experimentally and numerically studied. Penetration tests as well as numerical simulations are employed to obtain Ballistic Limit Velocity (BLV) of the tiles. Experimental and numerical results yield BLV of bare tiles as 145 2 and 141.5 m/s, respectively. For the wrapped tiles, these values are increased to 168 2 and 162 m/s, respectively. Therefore, 13% increase in BLV of the ceramic tiles is obtained by just 2.4% increase in its weight. Moreover, it is shown that energy absorption of the wrapped tiles is at least 11% greater than that of the bare ones. Based on the results, the increase in BLV and energy absorption is due to the increase in the fracture conoid angle which postpones crack propagation to the back plate.