The development of novel nanomaterials with superior reflection loss (RL), thin thickness, wide bandwidth, and low density has recently received significant attention in an effort to increase their effectiveness in electromagnetic (EM) microwave absorption while maintaining an easy manufacturing process. Naturally, using conventional materials with magnetic or dielectric loss makes it difficult to achieve the last criterion and limitations the thickness of the absorber and mass production. In this work, microwave nanocomposites samples were prepared on epoxy resin with different percentages of the nanoparticles of aluminum oxide (epoxy/Al2O3) with surfaces treated by amino propyl and silane. The surface treatment was carried out to improve the adhesion, morphology, and EM properties of the samples to enhance the microwave absorption and the Shielding Effectiveness (SE). Therefore, the treated sample can be considered as potential candidate for high frequency EM absorption applications. Then, the study is followed by structural, morphological, thermal, and electrical characterization of the prepared samples in order to enhance the performances of the latters. The EM absorption and the shielding effectiveness were done in the X band frequency (8 GHz-12 GHz). The obtained results confirmed that the nanocomposites treated samples exhibit higher EM absorption performance and better electrical characteristics. Overall, these results put forward the role played by the addition of the nanoparticles films as high-performance materials in electronic devices and EM applications.