In this study, the welding thermal cycle, as well as the microstructural and mechanical properties of welded AA6061-T6 plates, were studied. The plates were prepared and bead-on-plate welded using gas metal arc welding (GMAW). Numerical simulations using SYSWELD® were performed to obtain the thermal distribution in the welded plates. The numerical heat source was calibrated using the temperatures obtained from the experimental work and the geometry of the melting pool. The mechanical properties were obtained through microhardness tests and were correlated with the welding thermal cycle. Moreover, the mechanical behavior and local deformation in the heat-affected zone (HAZ) were investigated using micro-flat tensile (MFT) tests with digital image correlation (DIC). The mechanical properties of the subzones in the HAZ were then correlated with the welding thermal cycle and with the microstructure of the HAZ. It was observed that the welding thermal cycle produced microstructural variations across the HAZ, which significantly affected the mechanical behavior of the HAZ subzones. The results revealed that MFT tests with the DIC technique are an excellent tool for studying the local mechanical behavior change in AA6061-T6 welded parts due to the welding heat.