Various special effects occur during the operation of vibratory conveyors, e.g., multiple feeding velocities at the same excitation amplitude or so-called microthrows. In this work, a model for the simulation and prediction of the behavior of such a conveying system is presented. The simulation model is based on the bouncing ball model which is known from literature. The introduced impact law is coupled in horizontal direction by a frictional force which enables modeling a feeding process. The mentioned effect of multiple feeding velocities is studied with the developed simulation model. For the estimation of the critical excitation amplitude where a second feeding velocity appears, an analytical approach is developed. The corresponding feeding velocity can also be calculated with this approach. Moreover, the sensitivity of the initial conditions is investigated and criteria for the estimation are found. These can be applied to optimally adjust the conveyor in practice. Furthermore, the effects of microthrows are studied and analytical formulas for the estimation of characteristic values of the microthrows are derived. The dragging process following a sequence of microthrows is also investigated. All the developed formulas are validated by the simulation model.