An accurate description of interactions between thermal neutrons (below 4 eV) and materials is key to simulate the transport of neutrons in a wide range of applications such as criticality-safety, reactor physics, compact accelerator-driven neutron sources, radiological shielding or nuclear instrumentation, just to name a few. While the Monte Carlo transport code Geant4 was initially developed to simulate particle physics experiments, its use has spread to neutronics applications, requiring evaluated cross-sections for neutrons and gammas between 0 and 20 MeV (the so-called neutron High Precision -HP-package), as well as a proper offline or on-the-flight treatment of these cross-sections. In this paper we will point out limitations affecting Geant4 (version 10.07.p01) thermal neutron treatment and associated nuclear data libraries, by using comparisons with the reference Monte Carlo neutron transport code TRIPOLI-4 ® , version 11, and we will present the results of various modifications of the Geant4 neutron-HP package, required to overcome these limitations. Also, in order to broaden the support of nuclear data libraries compatible with Geant4, a nuclear processing tool has been developed and validated allowing the use of the code together with ENDF-BVIII.0 and JEFF-3.3 libraries for example. These changes should be taken into account in an upcoming Geant4 release.