2023
DOI: 10.48550/arxiv.2303.13248
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Numerical Bifurcation Analysis of Turing and Symmetry Broken Patterns of a Vegetation PDE Model

Abstract: We study the mechanisms of pattern formation for vegetation dynamics in water-limited regions. Our analysis is based on a set of two partial differential equations (PDEs) of reaction-diffusion type for the biomass and water and one ordinary differential equation (ODE) describing the dependence of the toxicity on the biomass. We perform a linear stability analysis in the one-dimensional finite space, we derive analytically the conditions for the appearance of Turing instability that gives rise to spatio-tempora… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 38 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?