We investigate the bifurcation structure of stationary localised patterns of the two-dimensional SwiftHohenberg equation on an infinitely long cylinder and on the plane. On cylinders, we find localised roll, square and stripe patches that exhibit snaking and non-snaking behaviour on the same bifurcation branch. Some of these patterns snake between four saddle-node limits: recent analytical results predict then the existence of a rich bifurcation structure to asymmetric solutions, and we trace out these branches and the PDE spectra along these branches. On the plane, we study the bifurcation structure of fully localised roll structures, which are often referred to as worms. In all the above cases, we use geometric ideas and spatial-dynamics techniques to explain the phenomena we encounter.