2018
DOI: 10.1155/2018/1838521
|View full text |Cite
|
Sign up to set email alerts
|

Numerical Contour Integral Methods for Free-Boundary Partial Differential Equations Arising in American Volatility Options Pricing

Abstract: The aim of this paper is to study the numerical contour integral methods (NCIMs) for solving free-boundary partial differential equations (PDEs) from American volatility options pricing. Firstly, the governing free-boundary PDEs are modified as a unified form of PDEs on the fixed space region; then performing Laplace-Carson transform (LCT) leads to ordinary differential equations (ODEs) which involve the unknown inverse functions of free boundaries. Secondly, the inverse free-boundary functions are approximate… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 24 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?