Significant progress has been accomplished during the past decades about geometric constraint solving, in particular thanks to its applications in industrial fields like CAD and robotics. In order to tackle problems of industrial size, many solving methods use, as a preprocessing, decomposition techniques that transform a large geometric constraint system into a set of smaller ones.In this paper, we propose a survey of the decomposition techniques for geometric constraint problems a . We classify them into four categories according to their modus operandi, establishing some similarities between methods that are traditionally separated. We summarize the advantages and limitations of the different approaches, and point out key issues for meeting industrial requirements such as generality and reliability.