The dispersion cancellation observed in Hong-Ou-Mandel (HOM) interference between frequency-entangled photon pairs has been the basis of quantum optical coherence tomography and quantum clock synchronization. Here we explore the effect of phase dispersion on ultranarrow HOM dips. We show that the higher-order dispersion, the linewidth of the pump laser, and the spectral shape of the parametric fluorescence have a strong effect on the dispersion cancellation in the high-resolution regime with several experimental verifications. Perfect dispersion cancellation with a linewidth of 3 μm is also demonstrated through 25 mm of water.