Due to the high cost of experiments commonly performed to verify the resistance of glass elements to impact loads, numerical models are used as an alternative to physical testing. In these, accurate material parameters are crucial for a realistic prediction of the behaviour of glass panels subjected to impact loads. This applies in particular to the glass’s strength, which is strictly dependent on the strain rate. The article reports the results of an extensive experimental campaign, in which 185 simply supported toughened glass samples were subjected to hard-body impacts. The study covers a wide range of glass thicknesses (from 5 to 15 mm), and it aims to determine a critical drop height causing fracture of the glass. Moreover, a 3D numerical model of the experimental set-up was developed to reproduce the experiments numerically and retrospectively to determine the peak stress in glass that developed during the impact. Based on the results of numerical simulations, a load duration factor of 1.40 for toughened glass for impact loads is proposed. In addition, the paper includes a case study to demonstrate the use of the modelling methodology and results of the work on a practical example of an internal glass partition wall.