Inverse Problems - Recent Advances and Applications 2023
DOI: 10.5772/intechopen.108363
|View full text |Cite
|
Sign up to set email alerts
|

Numerical Gradient Computation for Simultaneous Detection of Geometry and Spatial Random Fields in a Statistical Framework

Abstract: The target of this chapter is the evaluation of gradients in inverse problems where spatial field parameters and geometry parameters are treated separately. Such an approach can be beneficial especially when the geometry needs to be detected accurately using L2-norm-based regularization. Emphasis is laid upon the computation of the gradients directly from the governing equations. Working in a statistical framework, the Karhunen-Loève (K-L) expansion is used for discretization of the spatial random field and in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 20 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?