2020
DOI: 10.31349/suplrevmexfis.1.3.31
|View full text |Cite
|
Sign up to set email alerts
|

Numerical implementation of a Mach-Zehnder interferometer for Bose-Einstein condensates

Abstract: We numerically implement a Mach-Zehnder interferometer, where the coherence and oscillatory properties of Bose-Einstein condensates are explored and the system is modeled by the Gross-Pitaevskii equation. Several time-dependent external trapping potentials were engineered seeking the adiabatic regime which is quantified using fidelity measurements with respect to the actual ground-state of the trap. The dynamics of both conjugate variables, namely density and phase of the matter-wave function, are shown. Moreo… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Publication Types

Select...

Relationship

0
0

Authors

Journals

citations
Cited by 0 publications
references
References 15 publications
0
0
0
Order By: Relevance

No citations

Set email alert for when this publication receives citations?