In this paper we consider the Gauss Legendre quadrature method for numerical integration over the standard tetrahedron: {(x, y, z) | 0 ≤ x, y, z ≤ 1, x + y + z ≤ 1} in the Cartesian three-dimensional (x, y, z) space. The mathematical transformation from the (x, y, z) space to (ξ, η, ζ) space is described to map the standard tetrahedron in (x, y, z) space to a standard 2-cube: {(ξ, η, ζ) | −1 ≤ ξ, η, ζ ≤ 1} in the (ξ, η, ζ) space. This overcomes the difficulties associated with the derivation of new weight co-efficients and sampling points. The effectiveness of the formulae is demonstrated by applying them to the integration of three nonpolynomial and three polynomial functions.