In this paper, we apply the slender body theory to study the effect of higher order hydrodynamic interactions between two slender bodies of revolution moving in close proximity, in an unbounded, inviscid, and incompressible fluid. We compare between leading and secondorder approximations, as well as approximate and exact separation distances. The total solution is found to be valid for both small and large lateral separation distances. The contribution of the higher order forces is found to be relatively small for large separation distances, though significant for small separation distances. Comparisons with measurements and simulations are satisfactory.