“…Consider the DO-FOCP [9,27]: min1emJfalse(x,ufalse)=12∫01false[false(xfalse(tfalse)−tβfalse)2+false(ufalse(tfalse)−tβ−Γfalse(β+1false)false)2false]dt, with ∫01ρfalse(μfalse)scriptDμxfalse(tfalse) dμ=−xfalse(tfalse)+ufalse(tfalse),1emt∈false[0,1false], and xfalse(0false)=1. This example has been solved in [27], with the distribution functions ρfalse(μfalse)=δfalse(μ−βfalse) for β=1 and 0.5, by using several wavelet methods such as: Chebyshev (CWM), cosine and sine (CASWM), Laguerre (LaWM), Legendre (LWM) and variational iteration method (VIM). This problem has also been solved in [9] by using the following distribution functions: right left right left right left right left right left right left3pt0em 2em 0em 2em 0em 2em 0em 2em 0em 2em 0emtrueCase 1: ρ(μ...…”