An oscillating water column (OWC) is designed for the extraction and conversion of wave energy into usable electrical power, rather than being a standalone renewable energy source. This review paper presents a comprehensive analysis of the mathematical modeling approaches employed in OWC systems, aiming to provide an in-depth understanding of the underlying principles and challenges associated with this innovative technology. A prominent classification within the realm of wave energy devices comprises OWC systems, which exhibit either fixed or floating configurations. OWC devices constitute a significant proportion of the wave energy converter prototypes currently operational offshore. Within an OWC system, a hollow structure, either permanently fixed or floating, extends below the water’s surface, creating an enclosed chamber where air is captured over the submerged inner free surface. This comprehensive study offers a thorough assessment of OWC technology in conjunction with air turbines. Additionally, the investigation delves into theoretical, computational, and experimental modeling techniques employed for analyzing OWC converters. Moreover, this review scrutinizes theoretical, computational, and experimental modeling methodologies, providing a holistic understanding of OWC converters. Ultimately, this work contributes a thorough assessment of OWC technology’s current state, accentuating its potential for efficient wave energy extraction and suggesting future research avenues.