Bionic robotics, driven by advancements in artificial intelligence, new materials, and manufacturing technologies, is attracting significant attention from research and industry communities seeking breakthroughs. One of the key technologies for achieving a breakthrough in robotics is flexible sensors. This paper presents a novel approach based on wavelength and time division multiplexing (WTDM) for distributed optical waveguide shape sensing. Structurally designed optical waveguides based on color filter blocks validate the proposed approach through a cost-effective experimental setup. During data collection, it combines optical waveguide transmission loss and the way of controlling the color and intensity of the light source and detecting color and intensity variations for modeling. An artificial neural network is employed to model and demodulate a data-driven optical waveguide shape sensor. As a result, the correlation coefficient between the predicted and real bending angles reaches 0.9134 within 100 s. To show the parsing performance of the model more intuitively, a confidence accuracy curve is introduced to describe the accuracy of the data-driven model at last.