An active vortex generator is proposed for heat transfer enhancement in heat sinks and heat exchangers and removal of highly concentrated heat fluxes. It is based on applying a uniform magnetic field of permanent magnets to a magnetic fluid (ferrofluid) flowing in a heated channel.Numerical simulations are carried out for a 2 Vol% ferrofluid at different Reynolds numbers (150-210) and magnetic field intensities (0-1400 G) to investigate the possibility of simultaneous heat transfer enhancement and pressure drop reduction by the proposed method. Comparisons are also made with the other conventional vortex generators. Results indicate that the external magnetic field acts as a vortex generator that changes the velocity distribution, improves the flow mixing, and thereby increases the convective heat transfer. Surprisingly, the heat transfer enhancement is accompanied by a decrease of the friction coefficient due to the flow separation and decrease of the flow contact with the surface. It is also concluded that increasing the magnetic field intensity, decreasing the flow rate, and adding a second identical magnetic vortex generator have favorable effects on both pressure drop and heat transfer. A maximum of 37.8% enhancement of heat transfer with a 29.18% reduction of pressure drop has been achieved at the optimum condition. K E Y W O R D S flow mixing, forced convection, heat transfer, magnetic field effect, magnetite ferrofluid, vortex generator