e physicomechanical properties of tunnel surrounding rock are influenced by many factors such as the external environment and freeze-thaw cycles, especially in engineering in high cold regions. To understand the characteristics of freeze-thaw cycles on the creep properties of rocks in high cold regions, a freeze-thaw test, SEM test, triaxial compression test, and triaxial unloading creep test were carried out for tuffaceous sandstone in the G575 East Tianshan Tunnel in Hami, Xinjiang. e results show the following: (1) the freeze-thaw cycle reduces the degree of cementation of mineral particles in a microcosm, manifested on a macro scale by the scaling mode and crack propagation mode; (2) the effect of freeze-thaw cycles reduces the compressive strength and shear strength of rock samples (i.e., ductility enhancement); (3) for tuffaceous sandstone, the unloading process and freeze-thaw cycle each lead to improved creep deformation in rock samples, and radial deformation is more sensitive to rock deformation and failure; and (4) the creep rate of surrounding rock can be reduced by confining pressure. e peak creep rate increased with freezethaw time, as did the overall creep rate. Attention should be paid to deformation within a short period, and necessary supporting and protection measures should be taken to reduce creep.