Suspended sediment yield (SSY) prediction plays a crucial role in the planning of water resource management and design. Accurate sediment prediction using conventional models is very difficult due to many complex processes. We developed a fully automatic highly generalized accurate and robust artificial intelligence models for SSY prediction in Godavari River Basin, India. The genetic algorithm (GA), hybridized with an artificial neural network (ANN) (GA-ANN), is a suitable artificial intelligence model for SSY prediction. The GA is used to concurrently optimize all ANN’s parameters. The GA-ANN was developed using daily water discharge, with water level as the input data to estimate the daily SSY at Polavaram, which is the farthest gauging station in the downstream of the Godavari River Basin. The performances of the GA-ANN model were evaluated by comparing with ANN, sediment rating curve (SRC) and multiple linear regression (MLR) models. It is observed that the GA-ANN contains the highest correlation coefficient (0.927) and lowest root mean square error (0.053) along with lowest biased (0.020) values among all the comparative models. The GA-ANN model is the most suitable substitute over traditional models for SSY prediction. The hybrid GA-ANN can be recommended for estimating the SSY due to comparatively superior performance and simplicity of applications.