Investigating natural convection heat transfer of nanofluids in various geometries has garnered significant attention due to its potential applications across several disciplines. This study presents a numerical simulation of the natural convection heat transfer and entropy generation process in an E-shaped porous cavity filled with nanofluids, implementing Buongiorno’s simulation model. Analyzing the behavior of individual nanoparticles, or even the entire nanofluid system at the molecular level, can be extremely computationally intensive. Symmetry is a fundamental concept in science that can help reduce this computational burden considerably. In this study, nanofluids are frequently conceived of as a combination of water and Al2O3 nanoparticles at a concentration of up to 4% by volume. A unique correlation was proposed to model the effective thermal conductivity of nanofluids. The average Nusselt number, entropy production, and Rayleigh number have been illustrated to exhibit a decreasing trend when the volume concentration of nanoparticles inside the porous cavity rises; the 4% vol. water–alumina NFs yield 17.35% less average Nu number compared to the base water.