Thermal engineering requirements for building structures are becoming more and more strict. Thermal barriers (TBs) are energy-active elements integrated into the building structure in which a heat transfer medium (water or air) flows. A survey of the scientific literature on the subject points to the fact that this is a very topical and promising area of research and, so far, most studies on TBs are based on calculations, computer simulations and experimental measurements. Few studies have focused on the economic and environmental aspects of TB use. Following the research results presented by authors from all over the world, as well as our contributions in this scientific field that are described in a European patent, three utility models and scientific articles, in this study we have focused on the evaluation of the TB in terms of energy performance, economic efficiency and environmental friendliness by comparing the use of a classical envelope wall with the required thickness of thermal insulation meeting the normative requirements for thermal resistance R ((m2K)/W) and a perimeter wall with an integrated TB significantly eliminating the thermal insulation thickness. We evaluate the use of the thermal barrier using: economic indicator one, where we compare the cost of heat delivered to the TB in a structure with significantly eliminated thermal insulation and the saved cost of thermal insulation at the standard thickness; economic indicator two, where we compare the cost of heat delivered to the TB in a structure with significantly eliminated thermal insulation with the potential gain from the sale of the useful area of the building gained compared to the area at the normative thickness of thermal insulation; and economic indicator three, where we compare the cost of heat delivered to the TB in a structure with significantly eliminated thermal insulation with the cost of grey energy at the normative thickness of thermal insulation. Based on a parametric study based on theoretical assumptions, it can be concluded that the thermal barrier shows a very promising and efficient solution in terms of the evaluation of economic indicators one to three, which are even more significant if we use heat for the TB from renewable energy sources (RES) or waste heat.