2023
DOI: 10.1063/5.0156175
|View full text |Cite
|
Sign up to set email alerts
|

Numerical investigation of the flame suppression mechanism of porous muzzle brake

Abstract: An excellent flame suppression effect can be achieved using a novel porous brake. To understand the flame-suppression mechanism of a porous brake, combustion using a muzzle brake is investigated. A set of internal ballistic equations is employed to provide accurate velocity and pressure for a projectile moving to the muzzle. The multispecies transport Navier–Stokes equations, which incorporate complex chemical reactions, are solved by coupling a real gas equation of state, the Soave–Redlich–Kwong model, and a … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
references
References 39 publications
0
0
0
Order By: Relevance