To improve the durability of asphalt pavement with heavy traffic conditions in cold regions, the parameter optimization of graded macadam transitional layer (GMTL) for the inverted asphalt pavement based on the mechanical response and the strength standard was studied. The stress distribution laws of GMTL were studied with different loads by means of BISAR3.0. The influences of the thickness and the modulus of GMTL on the pavement stress were analyzed. The optimal thickness and the modulus range of the GMTL were determined. Combined with a self-developing real-time data acquisition and a processing system for aggregate attitude (RDAPS), the strength control standard of the GMTL was established. Finally, the performance of the optimized inverted asphalt pavement structure was verified through the MEPDG design method. The results show that the tensile stress at the bottom of the surface layer reduced by about 58%, and the shear stress in GMTL increased by about 17% when the modulus of GMTL increases from 300 MPa to 800 MPa. However, the change in modulus has no significant influence on the maximum shear stress in the asphalt surface layer and the tensile stress in the base layer bottom. When the thickness of GMTL increases from 12 cm to 20 cm, the tensile stress in the bottom of the base layer reduced by about 31%. Based on the mechanical results from simulation calculation and the technical indicator required in the field, the recommended optimal parameters of GMTL are the modulus of 700 MPa and the thickness of 18 cm. In addition, the spatial attitude angle ΦN of wireless intelligent attitude aggregate (WIAA), the compressive strength Rc standard, and the California Bearing Ratio (CBR) standard were analyzed, and the strength control standard of inverted asphalt pavement with GMTL was proposed, namely, CBR ≥ 354%, Rc ≥ 1.06 MPa, and ΦN ≤ 3°. A significant improvement in the resistance to crack can be seen in the inverted asphalt pavement when the optimized structure was applied. Taking the 20-year service life as an example, the top-down cracks reduced by 29.3% and the bottom-up cracks reduced by 32.6% in comparison to the original structure. The recommended structural parameters of GMTL could be used to guide the construction and design of inverted asphalt pavement in cold regions.