In this article, the effect of absorption time on the surface chemistry and pore structure of activated carbon (AC) from waste leaves of Quercus alba with the H3PO4 chemical activation method. XRD, SEM, EDX, BET, TGA, and FT-IR analyses of prepared AC were used to figure out the properties of the activated carbon. The results demonstrated that the 48 h absorption time of H3PO4 contributed to the highest surface area, 943.2 m2/g, among all the prepared activated carbon samples. As the absorption time of the phosphoric acid activating agent was increased, the surface area initially increased and then started to decrease. The further surface chemical characterization of activated carbon was determined by FT-IR spectroscopic method. Life cycle assessment methodology was employed in order to investigate the environmental impacts associated with the laboratory steps for activated carbon (AC) production. The LCA approach was implemented using OpenLCA 1.10.3 software, while ReCiPe Midpoint (H) was used for environmental impact assessment. The results of the LCA study showed that the impact categories related to toxicity were particularly affected by the utilization of electrical energy (≈90%). The power utilized during laboratory procedures was the main cause of environmental impacts, contributing an average of nearly 70% across all impact categories, with the maximum contribution to the impact category of freshwater ecotoxicity potential (≈97%) and the minimum contribution to land use potential (≈10%).