A numerical study of fluid flow and heat transfer, applying natural convection is carried out in a porous corrugated rhombic enclosure. A uniform heating source is applied from the bottom boundary wall while the inclined side walls are maintained to a constant cold temperature and the top corrugated wall is retained at insulated condition inside the enclosure. The heat transfer and flow features are presented for a wide spectrum of Rayleigh numbers (Ra), 104 ≤ Ra ≤ 106, and Darcy numbers (Da), 10−3 ≤ Da ≤ 10−2. The number of undulations (n) for the top and bottom walls have been varied from 1 to 13 keeping the amplitude of undulation fixed. It is revealed that the characteristics of heat transfer are conceivably modulated by changing the parameter of the undulation number on the enclosure walls, specifically at the bottom and top. The influencing control of n in altering the heat transfer rate is felt maximum on the left wall and minimum for the right wall, and there is a strong interplay between Ra and Da together with n on dictating the heat transfer characteristics. The critical value, where heat transfer rate is observed as maximum is at n = 11 and thereafter the values decrease.