A numerical investigation is carried out to investigate the fluid flow field and heat transfer characteristics of two dimensional laminar incompressible jet flows. Simulations are performed for a single vertical slot jet on a block mounted on the bottom wall and the top wall is confined by a parallel wall surface. The present study reveals the vital impact of the Aspect Ratio (AR) and Reynolds number (Re) on the fluid flow and heat transfer characteristics over a wide range. It is observed that the presence of a solid block in the channel increases the overall unsteadiness in the flow. The correlation between the Reynolds numbers and reattachment length is suggested, for all Aspect Ratios (ARs). The horizontal velocity profile at various downstream locations for all ARs is employed to find out the location where the flow gets fully developed. The primary peak value of the Nusselt number (Nu) occurs at the stagnation point, and the secondary peak is at a downstream location. The average Nusselt number increases with the increase of Reynolds number and decreases with the increase of the distance between the jet and the block. The heat transfer correlations between the Reynolds number and Nusselt number are analyzed for constant wall temperature boundary conditions.