This study investigated the effects of various parameters on the SPL (Sound Pressure Level) levels of rod-airfoil configurations. An experimental study was performed to investigate the effects of the rod parameters, such as the configuration of the rod, the distance between the rod and the airfoil, the diameter effect of the rod, and the geometry of the rod, on the performance of the rod-airfoil configuration. An Artificial Neural Network (ANN) model was then developed and applied to accurately predict the SPL of rod-airfoil configurations. The results of the study revealed that the Levenberg-Marquardt (LM) algorithm with 2 hidden neurons produced the best performance in predicting the SPL level, with a training R-squared value of 0.9998 and a testing R-squared value of 0.998715. The findings also indicated that increasing rod diameter increases sound pressure level while reducing gap width increases SPL levels and decreases frequency values. This method offers a more precise and effective technique to forecast the SPL levels of rod-airfoil designs, allowing designers to enhance their creations and lower noise levels. The findings of this study can also be utilized to direct future research in this area and offer important information for a better understanding of the mechanism of rod-airfoil noise creation. To the best of the authors’ knowledge, this is the first study to look into rod-airfoil design predictions made using machine learning approaches.