In this study, the thrust performance of a staggered rotor system in-ground effect (IGE) and out-of-ground effect (OGE) while considering the interaction on wake characteristics were investigated experimentally. A thorough comprehension of their performance holds significant importance for trajectory planning, aircraft design, landing safety, and energy-efficient landings. The complex interactions within staggered rotor systems and the impact of ground effects make rotor distance and ground interactions critical factors influencing near-ground flight performance. The study investigated the influence and enhancements of rotor thrust performance through an examination of rotor speed, lateral distance, and altitude. Experimental tests were conducted on two small-scale rotor models to assess the effects of these parameters. These experiments compared the performance of staggered rotor systems with isolated rotors, analyzing the competition mechanism between the thrust loss caused by interference and the thrust gain of rotors IGE. Furthermore, emphasis was placed on analyzing the thrust gain issues exhibited by staggered rotor systems under the condition of H = 2R. Additionally, the analysis was focused on identifying prominent relative positions for thrust performance and parameters for improving thrust performance in ground effects in staggered rotor systems.