The incompatible numerical manifold method (INMM) is based on the finite cover approximation theory, which provides a unified framework for problems dealing with continuum and discontinuities. The incompatible numerical manifold method employs two cover systems as follows. The mathematical cover system provides the nodes for forming finite covers of the solution domain and the weighted functions, and the physical cover system describes geometry of the domain and the discontinuous surfaces therein. In INMM, the mathematical finite cover approximation theory is used to model cracks that lead to interior discontinuities in the process of displacement. Therefore, the discontinuity is treated mathematically instead of empirically by the existing methods. However, one cover of a node is divided into two irregular sub-covers when the INMM is used to model the discontinuity. As a result, the method sometimes causes numerical errors at the tip of a crack.improve the precision of the INMM, the analytical solution is used at the tip of a crack, and thus the cover displacement functions are extended with higher precision and computational efficiency. Some numerical examples are given.