Early diagnosis is crucial for effective treatment of socially significant diseases, such as type 1 diabetes mellitus (T1DM), pneumonia, and asthma. This study employs a diagnostic method based on infrared laser spectroscopy of human exhaled breath. The experimental setup comprises a quantum cascade laser, which emits in a pulsed mode with a peak power of up to 150 mW in the spectral range of 5.3–12.8 μm (780–1890 cm−1), and a Herriott multipass gas cell with a specific optical path length of 76 m. Using this setup, spectra of exhaled breath in the mid‐infrared range were obtained from 165 volunteers, including healthy individuals, patients with T1DM, asthma, and pneumonia. The study proposes a hybrid approach for classifying these spectra, utilizing a variational autoencoder for dimensionality reduction and a support vector machine method for classification. The results demonstrate that the proposed hybrid approach outperforms other machine learning method combinations.