The present study aims at investigating the ballistic impact response of jute, natural rubber and aluminium based tri-layer composites with two different configurations, namely Aluminium-Jute-Rubber-Jute and Jute-Rubber-Jute-Aluminium. The proposed composites were fabricated using the compression moulding technique and subjected to ballistic impact testing at impact velocities of 75 m/s, 105 m/s, 154 m/s and 183 m/s. The energy absorption and damage mitigation characteristics of the proposed fibre metal elastomer tri-layer composites were assessed. Results showed that among the two proposed composites, the composite with rubber facing the impact side exhibits better energy absorption and also helps in damage mitigation compared to the composite having aluminium on the impact side. In addition, a parametric study was carried out by varying the thickness of the rubber layer. It was observed that the impact response of the proposed tri-layer composites improved with increasing thickness of the rubber layer, especially in the case of the Jute-Rubber-Jute-Aluminium configuration.