Cadmium sulfide (CdS) thin films are deposited on the fluorine doped tin oxide coated glass substrate using the radio frequency magnetron sputtering setup. The effects of annealing in air on the structural, morphological, and optical properties of CdS thin film are studied. Optimal annealing temperature is investigated by annealing the CdS thin film at different annealing temperatures of 300, 400, and 500°C. Thin films of CdS are characterized by X-ray diffractometer analysis, field emission scanning electron microscopy, atomic force microscopy, UV-Vis-NIR spectrophotometer and four point probe. The as-grown CdS films are found to be polycrystalline in nature with a mixture of cubic and hexagonal phases. By increasing the annealing temperature to 500°C, CdS film showed cubic phase, indicating the phase transition of CdS. It is found from physical characterizations that the heat treatment in air increased the mean grain size, the transmission, and the surface roughness of the CdS thin film, which are desired to the application in solar cells as a window layer material.