In this paper, the process of methane replacement in gas hydrate with carbon dioxide during CO2 injection into a porous medium is studied. A model that takes into account both the heat and mass transfer in a porous medium and the diffusion kinetics of the replacement process is constructed. The influences of the diffusion coefficient, the permeability and extent of a reservoir on the time of full gas replacement in the hydrate are analyzed. It was established that at high values of the diffusion coefficient in hydrate, low values of the reservoir permeability, and with the growth of the reservoir length, the process of the CH4-CO2 replacement in CH4 hydrate will take place in the frontal regime and be limited, generally, by the filtration mass transfer. Otherwise, the replacement will limited by the diffusion of gas in the hydrate.