Friction at die/billet interface is a complex phenomenon affected by various operating and process parameters in metal forming industries. In presence of lubricating layer at the interfacial contact friction effect is reduced and enhances tool life and surface quality of product. The lubricant viscosity is strongly dependent on pressure and temperature during deformation of hard material and an accurate prediction of lubricants viscosity leads to realistic results in the work zone. Therefore, the paper incorporates numerical simulation of friction at the die/billet interface in hydrostatic extrusion of tungsten alloy 93W for three different lubricants whose rheology is represented by a Non-Newtonian friction model. The billet heating effect is incorporated in the investigation and results show that the co-efficient of friction varies in a range (0.058 to 0.062) along the work zone for various lubricating conditions in hydrostatic extrusion process.