In the reverse hot strip rolling, the coiling and uncoiling of the strip leads to unstable conditions during the forming process. Both the temperature of the strip and the dwell time in the coil vary and influence the microstructure evolution passing in the coil during reverse rolling. It makes the design of this process difficult. Therefore, development of the temperature model for the reverse hot rolling including coiling and uncoiling was the main objective of the paper. The identification of the unknown parameters of the boundary conditions is proposed. Methods for their determination are discussed. The analysis is performed on example of the reverse hot rolling of the magnesium alloy AZ31. The resulting temperature model reveals good agreement with thermocouple and pyrometer measurements.