Columns are one of the most usual supporting structures in a large number of cultural heritage buildings. However, it is difficult to obtain accurate information about their inner structure. Non-destructive testing (NDT) methodologies are usually applied, but results depend on the complexity of the column. Non-flat external surfaces and unknown and irregular internal materials complicate the interpretation of data. This work presents the study of one column by using ground-penetrating radar (GPR) combined with seismic tomography, under laboratory conditions, in order to obtain the maximum information about the structure. This column belongs to a "Modernista" building from Barcelona (Spain). These columns are built with irregular and fragmented clay bricks and mortar. The internal irregular and complex structure causes complicated 2D images, evidencing the existence of many different targets. However, 3D images provide valuable information about the presence and the state of an internal tube and show, in addition, that the column is made of uneven and broken bricks. GPR images present high correlation with seismic data and endoscopy observation carried out in situ. In conclusion, the final result of the study provides information and 3D images of damaged areas and inner structures. Comparing the different methods to the real structure of the column, the potential and limitations of GPR were evaluated.