Electrohydraulic forming (EHF), high-velocity forming technology, can improve the formability of a workpiece. Accordingly, this process can help engineers create products with sharper edges, allowing a product's radius of curvature to be less than 2 mm radius of curvature. As a forming process with a high-strain rate, the EHF process produces a shockwave and pressure during the discharge of an electrical spark between electrodes, leading to high-velocity impact between the workpiece and die. Therefore, the objective of this research is to develop an EHF process for forming a lightweight materials case with sharp edges. In order to do so, we employed A5052-H32, which has been widely used in the electric appliance industry. After drawing an A5052-H32 Forming Limit Diagram (FLD) via a standard limiting dome height (LDH) test, improvements to the formability via the EHF process were evaluated by comparing the strain between the LDH test and the EHF process. From results of the combined formability, it is confirmed that the formability was improved nearly twofold, and a sharp edge with less than 2 mm radius of curvature was created using the EHF process.