The multi-stage pulse competition of pressurized pulsed water jet becomes the initial pulse at the head tip, and hydraulic parameters are the key parameters that affect the characteristics of multiple pulses. Based on the ultra-high-speed imaging system, a pressurized pulsed water jet flow field capture system was constructed, and the effects of initial pressure and driving pressure of the pressurized chamber on the characteristics of multi-stage pulses were studied. The experimental results show that as the initial pressure of the booster chamber increases, the jet changes from a discontinuous state to a continuous state, and the multi-level pulse simultaneously changes from dominant multi-pulse to implicit multi-pulse; as the driving pressure increases, the initial spacing between the first pulse and the second pulse increases, and the peak velocity of the initial pulse gradually increases. At the same time, the location of the peak velocity also shifts away from the nozzle as the driving pressure increases. In addition, the peak velocity of the initial pulse is relatively close to the theoretical velocity of the continuous jet under driving pressure conditions.