The objective of this work is to present a three-dimensional Euler-Euler finite volume poly-dispersed (multi-bin) droplet tracker for in-flight icing purposes, with an additional Lagrangian re-injection step. This step has been added to increase the accuracy of the collection efficiency prediction in multi-element 2D and 3D cases where splashed and rebounding droplets re-impinge on aft surfaces, particularly in SLD conditions. Results show local increases in accuracy of up to 4% in a 3D single element case and up to 100% on flaps in 2D multi-element airfoil cases. The Lagrangian re-impingement correction improves significantly when using multi-bin, while also being more efficient than the standard approaches. Lastly, a simple bin to bin initialization strategy allows for up to 65% less computational time in the Eulerian droplet tracking step when running multi-bin simulations.